The Data Blog |
There are many ways synthetic data can be used to help grow, strengthen, and rejuvenate your organization and many processes it handles, but here are five key ways in which synthetic data will be able to directly help you and your company!
1) Synthetic Data has a wide variety of use cases to help you out with. Synthetic Data is artificially generated and thus can be manipulated for production testing and model fitting in a plethora of ways. It can be used for machine learning, mathematical model fitting, model testing, and more! 2) Synthetic Data adds an extra layer of security to your data; because synthetic data is artificially generated, if there is a data leak, hack, or if something ends up going wrong, there will be minimal security risk and harm as the exposed data will not put any individual's private information in danger of being exploited. This factor is huge within the cybersecurity world and adds as an extra precaution just in case there is a breach in the system. 3) Synthetic Data is cost-effective. Synthetic Data is less expensive to generate than it is to buy real data in terms of both time and money. Furthermore, because you may need different types of data for different types of test, you'll need several different types of data to test with; this begs the question, wouldn't it be easier to generate each type on the fly as needed rather than stat testing, realize you need to collect more samples and pause testing until you have collected enough to continue? 4) Synthetic Data is great when it comes to threat detection. Synthetic data can reflect authentic patterns and behaviors for insider threat detection and user behavior in the models it is used to create. Furthermore, it can be used during performance testing to cover a variety of different scenarios which can lead to increased threat detection and strengthen an application or model's defensive capabilities. 5) Synthetic Data strengthens performance more than authentic data can. Synthetic data can be used to test models with quickly and efficiently so that data can be analyzed right after the data is plugged in. Moreover, it can be used to train models in ways models can't be trained when using authentic data; it can be generated to fill in for any missing data or used to predict different types of behavior based on reasonable machine learning, rather than leaving data empty or assuming what 'would' have been answered.
0 Comments
Leave a Reply. |
Archives
August 2023
Categories
All
Data Blog |