ExactData

  • About
  • Dataset Sale
  • Applications
  • Contact
  • Data Blog
  • Partners
  • Resources
  • Sample Data
  • Smart Data
  • About
  • Dataset Sale
  • Applications
  • Contact
  • Data Blog
  • Partners
  • Resources
  • Sample Data
  • Smart Data

The Data Blog

Data Blog

How Synthetic Data Can Save AI

10/8/2021

0 Comments

 
According to VentureBeat, AI is facing several critical challenges. Not only does it need huge amounts of data to deliver accurate results, but it also needs to be able to ensure that data isn’t biased, and it needs to comply with increasingly restrictive data privacy regulations.

We have seen several solutions proposed over the last couple of years to address these challenges, including various tools designed to identify and reduce bias, tools that anonymize user data, and programs to ensure that data is only collected with user consent. But each of these solutions is facing challenges of its own.

Now we’re seeing a new industry emerge that promises to be a saving grace: synthetic data. Synthetic data is artificial computer-generated data that can stand-in for data obtained from the real world. A synthetic dataset must have the same mathematical and statistical properties as the real-world dataset it is replacing but does not explicitly represent real individuals. Think of this as a digital mirror of real-world data that is statistically reflective of that world. This enables training AI systems in a completely virtual realm. And it can be readily customized for a variety of use cases ranging from healthcare to retail, finance, transportation, and agriculture.

Over the last few years, there has been increasing concern about how inherent biases in datasets can unwittingly lead to AI algorithms that perpetuate systemic discrimination. In fact, Gartner predicts that through 2022, 85% of AI projects will deliver erroneous outcomes due to bias in data, algorithms, or the teams responsible for managing them.

One alternative often used to offset privacy concerns is anonymization. Personal data, for example, can be anonymized by masking or eliminating identifying characteristics such as removing names and credit card numbers from ecommerce transactions or removing identifying content from healthcare records. But there is growing evidence that even if data has been anonymized from one source, it can be correlated with consumer datasets exposed from security breaches. In fact, by combining data from multiple sources, it is possible to form a surprisingly clear picture of our identities even if there has been a degree of anonymization. In some instances, this can even be done by correlating data from public sources, without a nefarious security hack.
​

Synthetic data promises to deliver the advantages of AI without the downsides. Not only does it take our real personal data out of the equation, but a general goal for synthetic data is to perform better than real-world data by correcting bias that is often ingrained in the real world.
0 Comments



Leave a Reply.

    Archives

    April 2025
    August 2023
    April 2022
    March 2022
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019

    Categories

    All
    Artificial Data
    Cyber Data
    Interview
    Other
    Smart Data

    RSS Feed

    Data Blog

Questions? Contact us today, we'd love to hear from you!


Hours

M-F: 9am - 5pm

Email

[email protected]